
Please consider the environment before printing this slide deck
Icon from all-free-download.com, Environmental icons 310835 by BSGstudio, under CC-BY

Open-Source Energy System Modeling
TU Wien, VU 370.062

Dipl.-Ing. Dr. Daniel Huppmann

Lecture 2:
Hands-on example of working with git

https://all-free-download.com/free-vector/download/environmental-icons_310835.html
http://buysellgraphic.com/


Setting up a simple repository
with unit tests and continuous integration

The first rule of live demos: Never do a live demo. So let’s do a live demo.

Part	1

2Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2



Hands-on exercise

• Set up a new public GitHub repository at www.github.com

• Update the README (formatting using markdown)

• “Clone” the repository to your computer (recommended for novices: gitkraken.com)

• Add a license (why not start with APACHE 2.0?)
Add the statement and the badge to the readme

• Start developing a little Python function (recommended for novices: anaconda.com)

• Add a unit test

• Add a gitignore file

• Add continuous integration using a new branch
travis-ci.com to execute unit tests
stickler-ci to implement linter and code style verification

• Create a pull request to execute the CI and merge the new branch into master

• Add contributing guidelines, set up templates for pull requests

• Create a release

3Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2

https://github.com/
https://guides.github.com/features/mastering-markdown/
https://gitkraken.com/
http://www.apache.org/licenses/LICENSE-2.0
https://gist.github.com/lukas-h/2a5d00690736b4c3a7ba
https://anaconda.com/
https://travis-ci.com/
https://stickler-ci.com/


Hands-on exercise (Part II)

• If a non-admin user wants to push commits, you have to “fork” the repo
(create a copy under your GitHub user)

• Clone the fork to your computer

• Start a new branch

• Add a new function or extend some feature such that the unit tests fail

• Make a pull request to the upstream repository

• Fix the code such that unit tests pass

• Ask someone else to perform code review

• Merge the new development (by an admin)

4Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2



Some practical considerations and advice

Part	2

5Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2



Time allocation for increasing efficiency through automation 

xkcd by Randall Munroe

Is	it	worth	the	time	to	automate	repetitive	tasks?	Probably	not	really...

6Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2

https://xkcd.com/1205/


Good enough scientific programming

Data management:
save both raw and intermediate forms, create tidy data amenable to analysis

Software:
write, organize, and sharing scripts and programs used in the analysis following best practices

Collaboration:
make it easy for existing and new collaborators to understand and contribute to a project

Project organization:
organize the digital artefacts of a project to ease discovery and understanding

Manuscripts:
write manuscripts with a clear audit trail and minimize manual merging of conflicts

Adapted from Greg Wilson et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13(6), 2017.
doi: 10.1371/journal.pcbi.1005510

You	don’t	have	to	have	a	PhD	in	IT	to	do	decent	scientific	programming!
In	fact,	it	might	actually	help...

Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2 7

https://doi.org/10.1371/journal.pcbi.1005510


Good enough scientific programming – Software 

• Place a brief explanatory comment at the start of every program.

• Do not comment and uncomment sections of code to control a program's behaviour.

• Decompose programs into functions, and try to keep each function short enough for one screen.

• Be ruthless about eliminating duplication.

• Always search for well-maintained software libraries that do what you need.

• Test libraries before relying on them.

• Give functions and variables meaningful names.

• Make dependencies and requirements explicit.

• Provide a simple example or test data set.

• Submit code to a reputable DOI-issuing repository (e.g., zenodo).
Adapted from Greg Wilson et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13(6), 2017. 

doi: 10.1371/journal.pcbi.1005510

Your	worst	collaborator?	Yourself		from	six	months	ago...

Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2 8

https://zenodo.org/
https://doi.org/10.1371/journal.pcbi.1005510


Code style guides

Which programming language to use, which other conventions to follow?
If you don’t have a strong preference: follow the community or your room (office) mate!

Some practical guidelines:
Follow a suitable coding etiquette, e.g., PEP8 for Python, Google’s R style guide
For larger projects, agree on a folder structure and hierarchy early (source data, etc.)
Only change folder structure when it’s really necessary
For more complex code (e.g., packages), use tools to automatically build documentation
such as Sphinx and readthedocs.org

Keep in mind...
Code is read more often than it is written
Good code should not need a lot of documentation
Key criteria: readability and consistency with (future) collaborators and yourself!

Programming	should	be	seen	as	a	(not	foreign)	language

Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2 9

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/Rguide.xml
http://www.sphinx-doc.org/
https://readthedocs.org/


Software releases and semantic versioning

Semantic versioning uses a structure like <MAJOR>.<MINOR>.<PATCH>

For a new release (i.e., a published version), you MUST increment...
MAJOR when making incompatible API changes,
MINOR when adding backwards-compatible functionality,
PATCH when making backwards-compatible bug fixes.

Other considerations:
• Major version zero (0.y.z) is for initial development. Anything may change at any time.

• Version 1.0.0 defines the public API. After that, rules above must always be followed.
• Downstream version numbers MUST be reset to 0 when incrementing a version number.
• You MAY increment when substantial new internal features are added.
• A pre-release version MAY be denoted by appending a string, e.g., 1.0.0-alpha.

Adapted from Semantic Versioning 2.0.0, semver.org

If	a	piece	of	software	is	used	by	multiple	people,	clear	versioning	is	critical

10

0.1

1.0

1.2

2.0

0.1.1

1.1

1.0.1

1.0.2

0.1.2

0.2

1.2.1

0.2.1

First release

Initial
development

Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2

https://semver.org/


Coding etiquette

When you search for my colleague Matthew Gidden on Twitter, the first tweet you find is...

Keep	in	mind	that	the	internet	remembers	everything

11Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2



Social etiquette

Collaborative scientific programming is about communication, not code...
It’s the people, stupid!
And don’t be annoyed when, sometimes, some collaborators are stubborn...

Keep in mind that discussions via e-mail, chat, pull requests comments, code review, etc.
lack a lot of the social cues that human interaction is built upon

If there are two roughly equivalent ways to do something
and a code reviewer suggests that you use the other approach...

Just do it her/his way if there is no good reason not to – out of respect for the reviewer
and to avoid getting bogged down in escalating discussions

Give credit generously to your collaborators and contributors!

Be	kind	and	respectful	in	collaboration,	code	review	and	comments

12Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2



Homework assignment

• Start a new GitHub repository, add a license and set up continuous-integration (CI) tools

• Add functions or small features from any real-life project relevant to your work or interests
• The codebase should include 2-4 functions, 20-40 lines of code including documentation
• The repository should work as “stand-alone” project

(i.e., no need for other parts of your project/work that are not part of this repository)
• If you need any dependencies/packages, add a simple list in a file requirements.txt

and follow the instructions here to make tests pass on Travis (or another, similar tool if you prefer)
• Add at least one test per function and make sure that these are executed on CI
• If data is necessary to understand the scope of the functions, add a stylized dataset

• The README should explain the scope of the project and the purpose of the functions

• Invite me as a collaborator to your repository when the project is ready to be reviewed/graded

Programming languages: Python (preferred), R, Julia
Invitation to collaborate due by Monday, May 11, 23:59 (please do not push any commits after)

Create	a	simple	repository	based	on	any	of	your	real-life	projects

Daniel HuppmannOpen-Source Energy System Modeling, Lecture 2 13

https://docs.travis-ci.com/user/languages/python/


Dr. Daniel Huppmann
Research Scholar – Energy Program

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria

huppmann@iiasa.ac.at
http://www.iiasa.ac.at/staff/huppmann

Thank	you	very	much	for	your	attention!

This presentation is licensed under
a Creative Commons Attribution 4.0 International License 

http://iiasa.ac.at
http://www.iiasa.ac.at/staff/huppmann
https://creativecommons.org/licenses/by/4.0/

