‘ ﬁ International Institute for
- Applied Systems Analysis

|| ASA www.iiasa.ac.at

Lecture 2:
Hands-on example of working with git

Open-Source Energy System Modeling
TU Wien, VU 370.062

Dipl.-Ing. Dr. Daniel Huppmann

P\ Please consider the environment before printing this slide deck

’ Y |con from all-free-download.com, Environmental icons 310835 by BSGstudio, under CC-BY

https://all-free-download.com/free-vector/download/environmental-icons_310835.html
http://buysellgraphic.com/

Part 1

Setting up a simple repository
with unit tests and continuous integration

The first rule of live demos: Never do a live demo. So let’s do a live demo.

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann

Hands-on exercise

« Set up a new public GitHub repository at www.github.com €) GitHub
« Update the README (formatting using markdown)

« “Clone” the repository to your computer (recommended for novices: gitkraken.com) GitKraken

« Add a license (why not start with APACHE 2.07?)
= Add the statement and the badge to the readme

Start developing a little Python function (recommended for novices: anaconda.com) @ python -)

ANACONDA
Add a unit test

Add a gitignore file

« Add continuous integration using a new branch
= travis-ci.com to execute unit tests CAT %
= stickler-ci to implement linter and code style verification byl o

Create a pull request to execute the Cl and merge the new branch into master

Add contributing guidelines, set up templates for pull requests

Create a release

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann

https://github.com/
https://guides.github.com/features/mastering-markdown/
https://gitkraken.com/
http://www.apache.org/licenses/LICENSE-2.0
https://gist.github.com/lukas-h/2a5d00690736b4c3a7ba
https://anaconda.com/
https://travis-ci.com/
https://stickler-ci.com/

Hands-on exercise (Part Il)

e If a non-admin user wants to push commits, you have to “fork” the repo
(create a copy under your GitHub user)

« Clone the fork to your computer

« Start a new branch

« Add a new function or extend some feature such that the unit tests fail
« Make a pull request to the upstream repository

« Fix the code such that unit tests pass

« Ask someone else to perform code review

« Merge the new development (by an admin)

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann

Part 2

Some practical considerations and advice

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann

Time allocation for increasing efficiency through automation

Is it worth the time to automate repetitive tasks? Probably not really...

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE
EFFCIENT BEFORE YOURE SPENDING MORE TiIME THAN YOU SAVE?

(RCROSS FIVE YEARS)

— HOWOFTEN YOO DOTHE TROK —
foy by DALY WEEKLY MONHLY YEPRLY

DAY | 2 HOURS MINSUQTES Mn:IUTES er}UTE 5Ecosnos

@D% |2 HOURS | 2 HouRS MlNzl)ITES M|N§Tt-:5 SEC%%DS

0 weers |[3] 05 |12 woors| 2vours | 20 | T

1 HOOR MINUTES

5 HOURS

[T] oAY | 2 Hows

[2]oAvs| 5 Howks
oo

2 WEEKs || 1] DAY

Open-Source Energy System Modeling, Lecture 2

xkcd by Randall Munroe

Daniel Huppmann

https://xkcd.com/1205/

Good enough scientific programming

You don’t have to have a PhD in IT to do decent scientific programming!
In fact, it might actually help...

Data management:
= save both raw and intermediate forms, create tidy data amenable to analysis

Software:
= write, organize, and sharing scripts and programs used in the analysis following best practices

Collaboration:
= make it easy for existing and new collaborators to understand and contribute to a project

Project organization:
= organize the digital artefacts of a project to ease discovery and understanding

Manuscripts:

= write manuscripts with a clear audit trail and minimize manual merging of conflicts

Adapted from Greg Wilson et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13(6), 2017.
doi: 10.1371/journal.pcbi.1005510

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann

https://doi.org/10.1371/journal.pcbi.1005510

Good enough scientific programming — Software

Your worst collaborator? Yourself from six months ago...

« Place a brief explanatory comment at the start of every program.

« Do not comment and uncomment sections of code to control a program's behaviour.

« Decompose programs into functions, and try to keep each function short enough for one screen.
« Be ruthless about eliminating duplication.

« Always search for well-maintained software libraries that do what you need.

« Test libraries before relying on them.

« Give functions and variables meaningful names.

« Make dependencies and requirements explicit.

« Provide a simple example or test data set.

« Submit code to a reputable DOI-issuing repository (e.g., zenodo).

Adapted from Greg Wilson et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13(6), 2017.
doi: 10.1371/journal.pcbi.1005510

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann

https://zenodo.org/
https://doi.org/10.1371/journal.pcbi.1005510

Code style guides

Programming should be seen as a (not foreign) language
Which programming language to use, which other conventions to follow?
= |If you don’t have a strong preference: follow the community or your room (office) mate!

Some practical guidelines:
= Follow a suitable coding etiquette, e.g., PEP8 for Python, Google’s R style guide

For larger projects, agree on a folder structure and hierarchy early (source data, etc.)

—
= Only change folder structure when it’s really necessary
= For more complex code (e.g., packages), use tools to automatically build documentation
such as Sphinx and readthedocs.org :
Read the Docs

Keep in mind...
= Code is read more often than it is written
= Good code should not need a lot of documentation
= Key criteria: readability and consistency with (future) collaborators and yourself!

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/Rguide.xml
http://www.sphinx-doc.org/
https://readthedocs.org/

Software releases and semantic versioning

If a piece of software is used by multiple people, clear versioning is critical
r

Semantic versioning uses a structure like <MAJOR>.<MINOR>.<PATCH> o
For a new release (i.e., a published version), you MUST increment... Initial <
= MAJOR when making incompatible API changes, development

= MINOR when adding backwards-compatible functionality, o

= PATCH when making backwards-compatible bug fixes. -
First release —> N0

Other considerations:

- Major version zero (0 . v . z) is for initial development. Anything may change at any time.

Version 1.0 . 0O defines the public API. After that, rules above must always be followed.

. : : . 1
Downstream version numbers MUST be reset to 0 when incrementing a version number.

You MAY increment when substantial new internal features are added. 1

A pre-release version MAY be denoted by appending a string, e.g.,, 1 .0.0-alpha.

Adapted from Semantic Versioning 2.0.0, semver.org 0

1 B8 .D'UU'

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann 10

https://semver.org/

Coding etiquette
Keep in mind that the internet remembers everything

When you search for my colleague Matthew Gidden on Twitter, the first tweet you find is...

4 -)
() S2lovs Sommis -
fuck it, just add the token ~ Matthew Gidden
~ github.com/gidden
10:17 AM - 3 Jun 2017

\ 9 L Q ™ j

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann 11

Social etiquette

Be kind and respectful in collaboration, code review and comments

Collaborative scientific programming is about communication, not code...
= |t's the people, stupid!
= And don’t be annoyed when, sometimes, some collaborators are stubborn...

Keep in mind that discussions via e-mail, chat, pull requests comments, code review, etc.
lack a lot of the social cues that human interaction is built upon

If there are two roughly equivalent ways to do something
and a code reviewer suggests that you use the other approach...

= Just do it her/his way if there is no good reason not to — out of respect for the reviewer
and to avoid getting bogged down in escalating discussions

Give credit generously to your collaborators and contributors!

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann

12

Homework assignment

Create a simple repository based on any of your real-life projects

Start a new GitHub repository, add a license and set up continuous-integration (Cl) tools

Add functions or small features from any real-life project relevant to your work or interests
- The codebase should include 2-4 functions, 20-40 lines of code including documentation

« The repository should work as “stand-alone” project
(i.e., no need for other parts of your project/work that are not part of this repository)

- If you need any dependencies/packages, add a simple list in a file requirements. txt
and follow the instructions here to make tests pass on Travis (or another, similar tool if you prefer)

- Add at least one test per function and make sure that these are executed on Cl
- If data is necessary to understand the scope of the functions, add a stylized dataset

The README should explain the scope of the project and the purpose of the functions
Invite me as a collaborator to your repository when the project is ready to be reviewed/graded

= Programming languages: Python (preferred), R, Julia
= Invitation to collaborate due by Monday, May 11, 23:59 (please do not push any commits after)

Open-Source Energy System Modeling, Lecture 2 Daniel Huppmann

13

https://docs.travis-ci.com/user/languages/python/

International Institute for
- Applied Systems Analysis
|| ASA www.iiasa.ac.at

Thank you very much for your attention!

Dr. Daniel Huppmann
Research Scholar — Energy Program

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria

huppmann@iiasa.ac.at
http://www.iiasa.ac.at/staff/huppmann

This presentation is licensed under @ ®
a Creative Commons Attribution 4.0 International License /=

http://iiasa.ac.at
http://www.iiasa.ac.at/staff/huppmann
https://creativecommons.org/licenses/by/4.0/

