{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# First steps with the ``pyam`` package \n",
"\n",
"## *An open-source Python package for IAM scenario analysis and visualization*\n",
"\n",
"\n",
"
\n",
"\n",
"## Scope and feature overview\n",
"\n",
"The ``pyam`` package provides a range of diagnostic tools and functions \n",
"for analyzing and working with scenario data following the IAMC template format.\n",
"A comprehensive documentation of the package is available\n",
"at [software.ene.iiasa.ac.at/pyam/](http://software.ene.iiasa.ac.at/pyam/)\n",
"\n",
"An illustrative example of the IAMC template is shown below;\n",
"see [data.ene.iiasa.ac.at/database/](http://data.ene.iiasa.ac.at/database/) for more information.\n",
"\n",
"\n",
"| **Model** | **Scenario** | **Region** | **Variable** | **Unit** | **2005** | **2010** | **2015** |\n",
"|---------------------|---------------|------------|----------------|----------|----------|----------|----------|\n",
"| MESSAGE V.4 | AMPERE3-Base | World | Primary Energy | EJ/y | 454.5 |\t479.6 | ... |\n",
"| ... | ... | ... | ... | ... | ... | ... | ... |\n",
"\n",
"This notebook illustrates some basic functionality of the ``pyam`` package\n",
"and the ``IamDataFrame`` class:\n",
"\n",
"1. Importing timeseries data from `xlsx` or `csv` files.\n",
"2. Listing models, scenarios and variables included in the data.\n",
"3. Display of timeseries data \n",
" as [pd.DataFrame](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html).\n",
"4. Visualization tools for timeseries data using the [matplotlib](https://matplotlib.org/) package.\n",
"5. Evaluating the model data and executing a range of diagnostic checks for identifying outliers.\n",
"6. Categorization of scenarios according to timeseries data values or checks on required variables.\n",
"7. Exporting data to `xlsx` using the IAMC template.\n",
"\n",
"\n",
"## Tutorial data\n",
"\n",
"The timeseries data used in this tutorial is a partial snapshot of the scenario database \n",
"compiled for the IPCC's Fifth Assessment Report (AR5):\n",
"\n",
"> Krey V., O. Masera, G. Blanford, T. Bruckner, R. Cooke, K. Fisher-Vanden, H. Haberl, E. Hertwich, E. Kriegler, D. Mueller, S. Paltsev, L. Price, S. Schlömer, D. Ürge-Vorsatz, D. van Vuuren, and T. Zwickel, 2014: *Annex II: Metrics & Methodology*. \n",
"\n",
"> In: *Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. [Link](https://www.ipcc.ch/report/ar5/wg3/)\n",
"\n",
"The complete database is publicly available at [tntcat.iiasa.ac.at/AR5DB/](https://tntcat.iiasa.ac.at/AR5DB/).\n",
"\n",
"
\n",
"
\n",
"\n",
"The data snapshot used for this tutorial consists of selected data from two model intercomparison projects:\n",
"\n",
" - Energy Modeling Forum Round 27 \n",
" ([EMF27](https://emf.stanford.edu/projects/emf-27-global-model-comparison-exercise)),\n",
" see the Special Issue in [Climatic Change 3-4, 2014](https://link.springer.com/journal/10584/123/3/page/1).\n",
" \n",
" - EU FP7 project [AMPERE](https://tntcat.iiasa.ac.at/AMPEREDB/), \n",
" see the following scientific publications:\n",
" \n",
" > - Riahi, K., et al. (2015). \"Locked into Copenhagen pledges — Implications of short-term emission targets \n",
" > for the cost and feasibility of long-term climate goals.\" \n",
" > *Technological Forecasting and Social Change* 90(Part A): 8-23. \n",
" > [DOI: 10.1016/j.techfore.2013.09.016](https://doi.org/10.1016/j.techfore.2013.09.016)\n",
" \n",
" > - Kriegler, E., et al. (2015). \"Making or breaking climate targets: The AMPERE study on \n",
" > staged accession scenarios for climate policy.\"\n",
" > *Technological Forecasting and Social Change* 90(Part A): 24-44. \n",
" > [DOI: 10.1016/j.techfore.2013.09.021](https://doi.org/10.1016/j.techfore.2013.09.021)\n",
"\n",
"