
Please consider the environment before printing this slide deck
Icon from all-free-download.com, Environmental icons 310835 by BSGstudio, under CC-BY

Open-Source Energy System Modeling
TU Wien, VU 370.062

Dipl.-Ing. Dr. Daniel Huppmann

Lectures 1 & 2:
Principles of open-source and collaborative

scientific programming for energy modelling

https://all-free-download.com/free-vector/download/environmental-icons_310835.html
http://buysellgraphic.com/

Required reading and preparation

• Preparation for scientific programming exercises in this lecture:
create a GitHub account
know what it means to 'clone' a repository, make a 'commit' and 'push'
either get familiar with 'git' using the command line
or get familiar with a program for working with git repos (for novice users, try Gitkraken)
Install Python (for novice users, try Anaconda)
get familiar with the basic Python syntax

• Required reading:
The FAIR Guiding Principles, Mark Wilkinson et al. Scientific Data 3:160018 (2016)
doi: 10.1038/sdata.2016.18
Greg Wilson et al. Good enough practices in scientific computing.
PLOS Computational Biology 13(6), 2017. doi: 10.1371/journal.pcbi.1005510

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 2

https://github.com/
https://tiss.tuwien.ac.at/education/course/admin/www.gitkraken.com
https://www.anaconda.com/
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1371/journal.pcbi.1005510

Background: Climate change mitigation and energy system transformation

Following	the	approval	of	the	IPCC	Special	Report	on	Global	Warming	of	1.5°C,	
media	&	newspapers	widely	quoted	required	system	transformations

www.nytimes.com/2018/10/07/climate/
ipcc-climate-report-2040.html

[…] To prevent 2.7 degrees of warming, the
report said, greenhouse pollution must be
reduced by 45 percent from 2010 levels by 2030,
and 100 percent by 2050. It also found that, by
2050, use of coal as an electricity source would
have to drop from nearly 40 percent today to
between 1 and 7 percent. Renewable energy
such as wind and solar, which make up about
20 percent of the electricity mix today, would
have to increase to as much as 67 percent. […]

Harry Taylor, 6, played with the bones of dead livestock
in Australia, which has faced severe drought.

Brook Mitchell/Getty Images

The IPCC Special Report on
Global Warming of 1.5°C (SR15)

was published in the fall 2018.
www.ipcc.ch/sr15

3

Where do these numbers
come from?

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

http://www.nytimes.com/2018/10/07/climate/ipcc-climate-report-2040.html
http://www.ipcc.ch/sr15

Overview of the lecture

Content and teaching goals:

• Introduction to scientific programming and open-source software/data (Lecture 1)

What is it, why do we it, how do we do it?

• Integrated assessment of climate change & sustainable development (Lectures 2 & 3)

How can scenarios from these models be used in scientific assessment like the IPCC SR15?

Using Jupyter notebooks and the pyam package for scenario analysis

(software.ene.iiasa.ac.at/pyam)

• Development of a national energy system model for policy evaluation (Lectures 4 & 5)

How can we develop scenarios to analyse climate policy measures?

Using the open-source MESSAGEix energy modelling framework (MESSAGEix.iiasa.ac.at)

Course structure and lecture content subject to change depending on feedback and interest!

We	will	dive	into	the	assessment	of	energy	system	transformation	pathways
while	discussing	the	key	concepts	of	collaborative	scientific	programming

4Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

https://software.ene.iiasa.ac.at/pyam
https://messageix.iiasa.ac.at/

About myself: education and research career

• Dipl.-Ing. (MSc) in Mathematics at TU Wien, specialization Mathematics in Economics

• Researcher at the “German Institute for Economic Research” (DIW Berlin)

• Doctorate at TU Berlin in Operations Research, Game Theory and Energy Economics

• Postdoctoral Fellowship at Johns Hopkins University, Baltimore

• Research Fellow at “Resources for the Future” (think-tank in Washington D.C.)

• Research Scholar (since October 2015) at the Energy Program,
International Institute for Applied Systems Analysis, Laxenburg

• Contributing Author and Chapter Scientist of the IPCC’s Special Report
on Global Warming of 1.5°C (SR15) published in October 2018

From	mathematics	to	energy	economics	and	climate	policy

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 5

Overview of the lecture (II)

Requirements:

A good understanding of energy systems and climate policy

Experience with at least one scientific programming language

Mode of exercises:

Submit assignments via GitHub pull requests and Scenario Explorer workspaces

Grade:

Submitted assignments (50%)

Oral discussion of submitted exercises and related questions (30%)

Active participation in class – feel free to ask questions any time (20%)

The	correct	use	of	collaborative	tools	and	workflows	will	be	as	important
as	the	application	to	a	problem	and	correct	interpretation	of	the	results

6Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

About you...

What	is	your	background	and	experience	level	with (scientific)	programming?

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 7

Microsoft Excel as a programming language?

John Oliver, Last Week Tonight, June 5, 2016. Meme from memegenerator.net, Clip on youtube.com

People	tend	to	have	strong	feelings	about	Excel...

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 8

https://memegenerator.net/img/instances/69472196/nothing-good-happens-in-excel.jpg
https://www.youtube.com/watch?v=k2CSZGegKnY

An introduction to open, collaborative scientific research

Based on material by Matthew Gidden (@gidden) and Paul Natsuo Kishimoto (@khaeru)

Part	1

9Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

https://github.com/gidden
https://github.com/khaeru

The intersection between energy economics and mathematics

Adapted from drewconway.com

Current	research	requires	substantial	expertise	in	scientific	programming

10

Substantive expertise
in energy economics,

climate change, ...

Maths
and

statistics

Scientific
programming

Danger zone!

“Traditional” research in the field
of applied Operations Research

Current data science,
machine learning

This is where the
magic happens!

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

http://drewconway.com/the-lab

Key misconceptions about best practice in open scientific programming

• Who is your main (and usually worst) collaborator?
Yourself from six months ago!
Because you did not write enough documentation and don’t respond to emails anymore

• Why is it a bad idea to use data or software that does not have an open license?
Bad karma!
Are you intending to distribute your work?
How are you planning to deal with the parts that your project depends on?

• Why should you share data and code under an open-source license?
Good karma!
Standard licenses have a disclaimer of liability, so you cannot be accountable for problems
There is probably a growing expectation from your (potential) collaborators
Treat your GitHub, etc. profile as your “business card” similar to your list of publications

If	you	think	that	this	topic	is	of	no	concern	to	you,	you’re	probably	wrong

11Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

Licensing – free and/or open-source software

• Per default, a creative work including software code attracts copyright
The authors (or the employer) retains all rights on how the work may be used be others

• Free software is not quite the same as open-source

In practice, the terms are used interchangeably

• Two classes of free/open software licenses
distinguished by limitations on redistribution:

Permissive: No restrictions on redistribution,
including the right not to share derivative work
Copyleft: All modifications must be
redistributed under the same open license

Freedom	in	science	is	not	about	the	price	– it’s	about	what	you’re	allowed	to	do

Freedom 0: To run the program for any purpose.
Freedom 1: To study how the program works,

and change it to make it do what you wish.
Freedom 2: To redistribute and make copies

so you can help your neighbour.
Freedom 3: To improve the program, and release

your improvements/modifications to the public.

The first formal definition of free software was written
by Richard Stallmann for the Free Software Foundation.
GNU's Bulletin 1(1):8, February 1986. Via Wikipedia.

defined by “Four Freedoms”

To find out which license is appropriate for your project: choosealicense.com
12Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

https://www.gnu.org/bulletins/bull1.txt
https://en.wikipedia.org/wiki/Free_software
https://choosealicense.com/

The FAIR Guiding Principles

• Good data management and stewardship is not a goal in itself
Rather, it’s a pre-condition supporting knowledge discovery and innovation.

• Increasingly, science funders, publishers and governmental agencies require
data management and stewardship plans publicly funded research projects

• Digital research objects should be available for transparency, reproducibility and reusability
This includes data as well as algorithms, tools and workflows to compile and assess data

• Data management must be geared towards human readers and machine processing
Humans have an intuitive sense of ‘semantics’ (the meaning or intent of a digital object)
But humans are not able to operate at the scope, scale, and speed required
for the scale of contemporary scientific data and complexity

Mark Wilkinson et al. Scientific Data 3:160018 (2016) doi: 10.1038/sdata.2016.18

Existing	digital	ecosystem	of	scholarly	data	publication	prevents	us
from	extracting	maximum	benefit	from	our	research	investments

13Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

https://doi.org/10.1038/sdata.2016.18

The distinction between FAIR for humans vs. machines

Rendered version of the landing page for doi 10.22022/SR15/08-2018.15429

Humans	are	good	at	parsing	information...

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 14

https://doi.org/10.22022/SR15/08-2018.15429

The distinction between FAIR for humans vs. machines

Source code of landing page for doi 10.22022/SR15/08-2018.15429

Computers	require	additional	structure	to	parse	information

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 15

<h1>IAMC 1.5°C Scenario Explorer and Data hosted by IIASA</h1>
<Creator:Author>Daniel Huppmann</Creator:Author>
...
<CreationName:Title>IAMC 1.5°C Scenario Explorer and Data
hosted by IIASA</CreationName:Title>
<Agent:Publisher><i>International Institute for Applied Systems Analysis
& Integrated Assessment Modeling Consortium</i></Agent:Publisher>.
<DateOfPublishing>(2018)</DateOfPublishing>
<Name:Identifier:DoiName>

10.22022/SR15/08-2018.15429</Name:Identifier:DoiName>
Item Type: <Type>Dataset</Type>
Please access this resource from the <Digital:Website><a target="_blank”
href="https://data.ene.iiasa.ac.at/ iamc-1.5c-explorer">
Scenario Explorer Website</Digital:Website>.

https://doi.org/10.22022/SR15/08-2018.15429

The FAIR Guiding Principles (II)

Data and/or metadata...

Adapted from Box 2: The FAIR Guiding Principles, Mark Wilkinson et al. Scientific Data 3:160018 (2016) doi: 10.1038/sdata.2016.18

Scientific	work	should	be	Findable,	Accessible,	Interoperable	and	Reusable

Findable

Accessible

Interoperable

Reusable

• F1. ... are assigned a unique and persistent identifier (Digital Object Identifier, DOI)
• F2. ... are described with rich metadata (defined by R1 below)
• F3. ... clearly and explicitly include the identifier of the data it describes
• F4. ... are registered or indexed in a searchable resource (including Google)
• A1. ... are retrievable by their identifier using a standardized protocol
• A2. ... are accessible, even when the data are no longer available
• I1. ... use a formal, shared, applicable language for knowledge representation
• I2. ... use vocabularies that follow FAIR principles
• I3. ... include qualified references to other (meta)data
• R1. ... are richly described with a plurality of accurate and relevant attributes:

clear data license, detailed provenance, meet community standards

16Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

https://doi.org/10.1038/sdata.2016.18

More common misconceptions about open scientific programming

• “I put all my source code/data on my website, so it is open!”

This is only true if you added an approved open-source license

Otherwise, don’t use the term open, because it can be (mis)understood as free software

• “My code/data is open because I’ll just send a copy to anyone who asks”

This is not open or free according to the common understanding in the community

• “If I make release my code/data under an open-source license, some people may misuse it!”

If you don’t make it openly available, nobody is going to use it at all

• “My code/data can’t have a DOI because there are proprietary data included...”

The DOI is only attached to the metadata of the object, so there is no problem

• “I can’t release my code/data now because I have to clean it first and write documentation”

If that is your approach to scientific programming, you’re doing it wrong...

There	are	many	arguments	against	open-source	– almost	none	are	valid

17Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

Reproducibility is key to good scientific research

Archiving

Definition: Permanent, incorruptible (as far as possible) storage of code, data or results

Data or results can be preserved, yet may be impossible to recreate (or just understand).

Version control

Definition: VC tracks changes to software source code or data over time.

VC can be used by one person and yet be unintelligible (i.e., not reproducible) to another.

Testing & quality control

Definition: Implementation of checks to verify that software and data behave as expected.

Reproducibility of the analysis for one research project doesn’t prevent the next researcher from
‘breaking’ (de-calibrating, misusing) a model or piece of software.

Recommended further reading:
Barnes (2010). Publish your computer code: it is good enough. Nature 467(753):775. doi: 10.1038/467753a

Barba (2016). The hard road to reproducibility. Science 354(6308):142. doi: 10.1126/science.354.6308.142

Some	examples	of	what’s	reproducible...	not!

18Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

https://doi.org/10.1038/467753a
https://doi.org/10.1126/science.354.6308.142

The rationale for proper version control tools

Adapted from “notFinal.doc” at “Piled Higher and Deeper” by Jorge Cham, http://phdcomics.com

In	love	and	in	scientific	research,	there	is	no	such	thing	as	“final”...

19Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

http://phdcomics.com/comics/archive.php?comicid=1531

A quick introduction to version control using git

Key differences between git version control vs. folder synchronization (e.g. Dropbox, Google Drive)

You define the relevant unit or size of a change by making a commit
Adding comments to your commits allows to attach relevant info to your code changes

Branches allow you to switch to a "parallel universe" within a version control repository

It’s a decentralized version control tool that supports offline, parallel work

There is a well-defined routine for merging developments from parallel branches

Several git implementations (e.g., GitHub) provide additional project management tools

User interfaces for code review using pull requests
Issue tracking and discussion, kanban boards, ...

However, keep in mind that git is great for uncompiled code and text with simple mark-up

Use other version control tools for data, presentations, compiled software, ...

Git	is	so	much	more	than	just	keeping	track	of	code	changes	over	time

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 20

A full git workflow

Git	is	a	decentralized	version	control	system	geared	for	collaboration

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 21

The remote repository

of the “official” codebase

upstream

“The internet” (e.g. GitHub) Your computer

Working

directory

Staging

area

git clone of

the repo

Your remote copy (fork)

of the repository

origin

addpush

pull-request

fork clone checkout

commit

fetch checkout

pull

fetch

local

Branching and merging with git

Getting started
with branching

Three options to merge the changes from dev into master

There	are	multiple	methods	to	bring	parallel	developments	back	together

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 22

master

dev

1) A merge commit 2) Rebase 3) Squash and merge

master

dev

master

dev

master

dev

... a commit

Setting up a simple repository
with unit tests and continuous integration

The first rule of live demos: Never do a live demo. So let’s do a live demo.

Part	2

23Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

Hands-on exercise

• Set up a new public GitHub repository at www.github.com

• Update the README (formatting using markdown)

• “Clone” the repository to your computer (recommended for novices: gitkraken.com)

• Add a license (why not start with APACHE 2.0?)
Add the statement and the badge to the readme

• Start developing a little Python function (recommended for novices: anaconda.com)

• Add a unit test

• Add a gitignore file

• Add continuous integration using a new branch
travis-ci.com to execute unit tests
stickler-ci to implement linter and code style verification

• Create a pull request to execute the CI and merge the new branch into master

• Add contributing guidelines, set up templates for pull requests

• Create a release

24Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

https://github.com/
https://guides.github.com/features/mastering-markdown/
https://gitkraken.com/
http://www.apache.org/licenses/LICENSE-2.0
https://gist.github.com/lukas-h/2a5d00690736b4c3a7ba
https://anaconda.com/
https://travis-ci.com/
https://stickler-ci.com/

Hands-on exercise (Part II)

• https://github.com/danielhuppmann/lecture_live_demo_2019

• If a non-admin user wants to push commits, you have to “fork” the repo
(create a copy under your GitHub user)

• Clone the fork to your computer

• Start a new branch

• Add a new function or extend some feature such that the unit tests fail

• Make a pull request to the upstream repository

• Fix the code such that unit tests pass

• Ask someone else to perform code review

• Merge the new development (by an admin)

25Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

https://github.com/danielhuppmann/lecture_live_demo_2019

Some practical considerations and advice

Part	3

26Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

Time allocation for increasing efficiency through automation

xkcd by Randall Munroe

Is	it	worth	the	time	to	automate	repetitive	tasks?	Probably	not	really...

27Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

https://xkcd.com/1205/

Good enough scientific programming

Data management:
save both raw and intermediate forms, create tidy data amenable to analysis

Software:
write, organize, and sharing scripts and programs used in the analysis following best practices

Collaboration:
make it easy for existing and new collaborators to understand and contribute to a project

Project organization:
organize the digital artefacts of a project to ease discovery and understanding

Manuscripts:
write manuscripts with a clear audit trail and minimize manual merging of conflicts

Adapted from Greg Wilson et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13(6), 2017.
doi: 10.1371/journal.pcbi.1005510

You	don’t	have	to	have	a	PhD	in	IT	to	do	decent	scientific	programming!
In	fact,	it	might	actually	help...

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 28

https://doi.org/10.1371/journal.pcbi.1005510

Good enough scientific programming – Software

• Place a brief explanatory comment at the start of every program.

• Do not comment and uncomment sections of code to control a program's behaviour.

• Decompose programs into functions, and try to keep each function short enough for one screen.

• Be ruthless about eliminating duplication.

• Always search for well-maintained software libraries that do what you need.

• Test libraries before relying on them.

• Give functions and variables meaningful names.

• Make dependencies and requirements explicit.

• Provide a simple example or test data set.

• Submit code to a reputable DOI-issuing repository (e.g., zenodo).
Adapted from Greg Wilson et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13(6), 2017.

doi: 10.1371/journal.pcbi.1005510

Your	worst	collaborator?	Yourself		from	six	months	ago...

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 29

https://zenodo.org/
https://doi.org/10.1371/journal.pcbi.1005510

Code style guides

Which programming language to use, which other conventions to follow?
If you don’t have a strong preference: follow the community or your room (office) mate!

Some practical guidelines:
Follow a suitable coding etiquette, e.g., PEP8 for Python, Google’s R style guide
For larger projects, agree on a folder structure and hierarchy early (source data, etc.)
Only change folder structure when it’s really necessary
For more complex code (e.g., packages), use tools to automatically build documentation
such as Sphinx and readthedocs.org

Keep in mind...
Code is read more often than it is written
Good code should not need a lot of documentation
Key criteria: readability and consistency with (future) collaborators and yourself!

Programming	should	be	seen	as	a	(not	foreign)	language

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2 30

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/Rguide.xml
http://www.sphinx-doc.org/
https://readthedocs.org/

Software releases and semantic versioning

Semantic versioning uses a structure like <MAJOR>.<MINOR>.<PATCH>

For a new release (i.e., a published version), you MUST increment...
MAJOR when making incompatible API changes,
MINOR when adding backwards-compatible functionality,
PATCH when making backwards-compatible bug fixes.

Other considerations:
• Major version zero (0.y.z) is for initial development. Anything may change at any time.

• Version 1.0.0 defines the public API. After that, rules above must always be followed.
• Downstream version numbers MUST be reset to 0 when incrementing a version number.
• You MAY increment when substantial new internal features are added.
• A pre-release version MAY be denoted by appending a string, e.g., 1.0.0-alpha.

Adapted from Semantic Versioning 2.0.0, semver.org

If	a	piece	of	software	is	used	by	multiple	people,	clear	versioning	is	critical

31

0.1

1.0

1.2

2.0

0.1.1

1.1

1.0.1

1.0.2

0.1.2

0.2

1.2.1

0.2.1

First release

Initial
development

Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

https://semver.org/

Coding etiquette

When you search for my colleague Matthew Gidden on Twitter, the first tweet you find is...

Keep	in	mind	that	the	internet	remembers	everything

32Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

Social etiquette

Collaborative scientific programming is about communication, not code
It’s the people, stupid!
And don’t be annoyed when, sometimes, some collaborators are stupid...

Keep in mind that discussions via e-mail, chat, pull requests comments, code review, etc.
lack a lot of the social cues that human interaction is built upon

If there are two roughly equivalent ways to do something
and a code reviewer suggests that you use the other approach...

Just do it her/his way if there is no good reason not to – out of respect for the reviewer
and to avoid getting bogged down in escalating discussions

Give credit generously to your collaborators and contributors!

Be	kind	and	respectful	in	collaboration,	code	review	and	comments

33Daniel HuppmannOpen-Source Energy System Modeling, Lectures 1 & 2

Dr. Daniel Huppmann
Research Scholar – Energy Program

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria

huppmann@iiasa.ac.at
http://www.iiasa.ac.at/staff/huppmann

Thank	you	very	much	for	your	attention!

This presentation is licensed under
a Creative Commons Attribution 4.0 International License

Many thanks to Matthew Gidden (@gidden) and Paul Natsuo Kishimoto (@khaeru)
for sharing their lecture material and experience with collaborative programming

mailto:huppmann@iiasa.ac.at
http://www.iiasa.ac.at/staff/huppmann
https://creativecommons.org/licenses/by/4.0/
https://github.com/gidden
https://github.com/khaeru

