Range of assumptions of socio-economic drivers (Figure 2.4)

Notebook sr15_2.3.1_range_of_assumptions

This notebook is based on the Release 1.1 of the IAMC 1.5C Scenario Explorer and Data and refers to the published version of the IPCC Special Report on Global Warming of 1.5C (SR15).

The notebook is run with pyam release 0.5.0.

The source code of this notebook is available on GitHub (release 2.0.2).

sr15_2.3.1_range_of_assumptions

IPCC SR15 scenario assessment

Assessment of underlying drivers and assumptions

This notebook contains the assessment of underlying drivers and assumptions of the scenario ensemble
in Section 2.3.1 and Figure 2.4 for the IPCC's "Special Report on Global Warming of 1.5°C".

The scenario data used in this analysis can be accessed and downloaded at https://data.ene.iiasa.ac.at/iamc-1.5c-explorer.

Load pyam package and other dependencies

In [1]:
import pandas as pd
import numpy as np
import io
import yaml
import math
import matplotlib.pyplot as plt
plt.style.use('style_sr15.mplstyle')
%matplotlib inline
import pyam

from utils import boxplot_by_cat
pyam - INFO: Running in a notebook, setting `pyam` logging level to `logging.INFO` and adding stderr handler

Import scenario data, categorization and specifications files

The metadata file with scenario categorisation and quantitative indicators can be downloaded at https://data.ene.iiasa.ac.at/iamc-1.5c-explorer.
Alternatively, it can be re-created using the notebook sr15_2.0_categories_indicators.

The last cell of this section loads and assigns a number of auxiliary lists as defined in the categorization notebook.

In [2]:
sr1p5 = pyam.IamDataFrame(data='../data/iamc15_scenario_data_world_r2.0.xlsx')
pyam.utils - INFO: Reading `../data/iamc15_scenario_data_world_r2.0.xlsx`
In [3]:
sr1p5.load_meta('sr15_metadata_indicators.xlsx')
pyam.core - INFO: Importing metadata for 416 scenarios (for total of 416)
In [4]:
with open("sr15_specs.yaml", 'r') as stream:
    specs = yaml.load(stream, Loader=yaml.FullLoader)

rc = pyam.run_control()
for item in specs.pop('run_control').items():
    rc.update({item[0]: item[1]})
cats = specs.pop('cats')
cats_15 = specs.pop('cats_15')
marker= specs.pop('marker')

Set specifications for figures and statistics

First, set the list of years included in the plots. Then, define an auxiliary dictionary and function for easier display.

In [5]:
filter_args = dict(df=sr1p5, category=cats, marker=None, join_meta=True)

Downselect scenario ensemble to years interest for this assessment

In [6]:
full_horizon = range(2010, 2101, 10)
In [7]:
df = sr1p5.filter(category=cats, year=full_horizon)

Set plotting settings for illustrative pathways

In [8]:
_rc = {
    'S1': dict(linewidth=3, linestyle='--'),
    'S2': dict(linewidth=4, linestyle=':'),
    'S5': dict(linewidth=3, linestyle='-.'),
    'LED': dict(linewidth=3, linestyle='-'),
}
In [9]:
def line_plot_with_markers(ax, _df, name, panel):
    _data = _df.filter(category=cats_15, keep=False).data
    ax.plot(pyam.plotting.reshape_line_plot(_data, 'year', 'value'),
            color='lightgrey')
    ax.scatter(x=[], y=[], c='lightgrey', label='all scenarios')
    y_pos = max(_data.value) - 0.05 * (max(_data.value) - min(_data.value))

    _data = _df.filter(category=cats_15).data
    ax.plot(pyam.plotting.reshape_line_plot(_data, 'year', 'value'),
            color='xkcd:baby blue')
    ax.scatter(x=[], y=[], c='xkcd:baby blue', label='1.5°C pathways')

    for m in marker:
        _data = _df.filter(marker=m).data
        if not _data.empty:
            ax.plot(pyam.plotting.reshape_line_plot(_data, 'year', 'value'),
                    color='xkcd:darkish blue', **_rc[m], label=m)
    
    ax.set_ylabel('{} ({})'.format(name, _data.unit.unique()[0]))
    pyam.plotting.set_panel_label('({})'.format(panel), ax=ax)
In [10]:
fig, ax = plt.subplots(2, 2, figsize=(8, 6))

pop = df.filter(variable='Population')
pop.convert_unit('million', 'billion', factor=1/1000, inplace=True)
line_plot_with_markers(ax[0][0], pop, 'Population', 'a')

gdp = df.filter(variable='GDP|PPP')
gdp.convert_unit('billion US$2010/yr', 'trillion US$2010/yr', factor=1/1000, inplace=True)
line_plot_with_markers(ax[0][1], gdp, 'Gross World Product', 'b')

final = df.filter(variable='Final Energy')
line_plot_with_markers(ax[1][0], final, 'Final Energy Demand', 'c')

food =  df.filter(variable='Food Demand')
line_plot_with_markers(ax[1][1], food, 'Food Demand', 'd')

ax[0][0].legend(loc=1)
fig.tight_layout()
In [11]:
fig.savefig('output/fig2.4_drivers_assumptions.png')

Export timeseries data to xlsx

In [12]:
writer = pd.ExcelWriter('output/fig2.4_data_table.xlsx')
pyam.utils.write_sheet(writer, 'population', pyam.filter_by_meta(pop.timeseries(), **filter_args),
                       index=True)
pyam.utils.write_sheet(writer, 'gdp', pyam.filter_by_meta(gdp.timeseries(), **filter_args),
                       index=True)
pyam.utils.write_sheet(writer, 'final energy', pyam.filter_by_meta(final.timeseries(), **filter_args),
                       index=True)
pyam.utils.write_sheet(writer, 'food demand', pyam.filter_by_meta(food.timeseries(), **filter_args),
                       index=True)
writer.save()
In [ ]: