CCS deployment by source and cumulative carbon dioxide stored (Figure 2.17)

Notebook sr15_2.4.2.3_ccs_deployment

This notebook is based on the Release 1.1 of the IAMC 1.5C Scenario Explorer and Data and refers to the published version of the IPCC Special Report on Global Warming of 1.5C (SR15).

The notebook is run with pyam release 0.5.0.

The source code of this notebook is available on GitHub (release 2.0.2).

sr15_2.4.2.3_ccs_deployment

IPCC SR15 scenario assessment

Analysis of carbon capture and sequestration (CCS)

This notebook computes indicators and diagnostics of the deployment of CCS by fuel and the total amount of CO2 stored as shown in Figure 2.17 in the IPCC's "Special Report on Global Warming of 1.5°C".

The scenario data used in this analysis can be accessed and downloaded at https://data.ene.iiasa.ac.at/iamc-1.5c-explorer.

Load pyam package and other dependencies

In [1]:
import pandas as pd
import numpy as np
import io
import itertools
import yaml
import math
import matplotlib.pyplot as plt
%matplotlib inline
import pyam

from utils import boxplot_by_cat
pyam - INFO: Running in a notebook, setting `pyam` logging level to `logging.INFO` and adding stderr handler

Import scenario data, categorization and specifications files

The metadata file with scenario categorisation and quantitative indicators can be downloaded at https://data.ene.iiasa.ac.at/iamc-1.5c-explorer.
Alternatively, it can be re-created using the notebook sr15_2.0_categories_indicators.

The last cell of this section loads and assigns a number of auxiliary lists as defined in the categorization notebook.

In [2]:
sr1p5 = pyam.IamDataFrame(data='../data/iamc15_scenario_data_world_r2.0.xlsx')
pyam.utils - INFO: Reading `../data/iamc15_scenario_data_world_r2.0.xlsx`
In [3]:
sr1p5.load_meta('sr15_metadata_indicators.xlsx')
pyam.core - INFO: Importing metadata for 416 scenarios (for total of 416)
In [4]:
with open("sr15_specs.yaml", 'r') as stream:
    specs = yaml.load(stream, Loader=yaml.FullLoader)

rc = pyam.run_control()
for item in specs.pop('run_control').items():
    rc.update({item[0]: item[1]})
cats = specs.pop('cats')
all_cats = specs.pop('all_cats')
subcats = specs.pop('subcats')
all_subcats = specs.pop('all_subcats')
plotting_args = specs.pop('plotting_args')
marker= specs.pop('marker')

Downselect scenario ensemble to categories of interest for this assessment

Use all years (as of 2020) to correctly compute the total amount of CO2 stored in each scenario.

In [5]:
years = range(2020, 2101, 5)
In [6]:
cats.remove('Above 2C')
In [7]:
df = sr1p5.filter(category=cats, year=years)

Set specifications for filter and plotting and initialize a data list

In [8]:
plot_ylabel = '{} with CCS (EJ)'
save_name = 'output/fig2.17{}.{}'
figure_format = 'png'
In [9]:
filter_args = dict(df=sr1p5, category=cats, marker=None, join_meta=True)
In [10]:
def plotting_args(name, panel_label=None, filetype=figure_format):
    return {'categories': cats, 'column': 'category', 'years': range(2020, 2101, 10), 'add_marker': marker,
            'ylabel': plot_ylabel.format(name),
            'save': save_name.format(name if panel_label is None else '{}_{}'.format(panel_label, name), filetype)}
In [11]:
data = []

Add IEA's 'Faster Transition Scenario' to the set of marker scenarios for comparison

In [12]:
m = 'IEA WEM'
col = 'marker'
sr1p5.set_meta(m, col,
               sr1p5.filter(model='IEA World Energy Model 2017',
                            scenario='Faster Transition Scenario'))
rc.update({'marker': {col: {m: 'o'}},
           'c': {col: {m: 'red'}},
           'edgecolors': {col: {m: 'black'}}}
         )
marker += [m]

Extract CCS timeseries data by fuel

In [13]:
ccs_bio = (
    pyam.filter_by_meta(
        df.filter(variable='Primary Energy|Biomass|Modern|w/ CCS')
        .timeseries(), **filter_args)
)
In [14]:
name = 'bioenergy'
fig = boxplot_by_cat(ccs_bio, **plotting_args(name, 'a'))
In [15]:
data.append(('Bioenergy with CCS', ccs_bio))
In [16]:
ccs_coal = (
    pyam.filter_by_meta(
        df.filter(variable='Primary Energy|Coal|w/ CCS')
        .timeseries(), **filter_args)
)
In [17]:
name = 'coal'
boxplot_by_cat(ccs_coal, **plotting_args(name, 'b'), legend=False)
In [18]:
data.append(('Coal with CCS', ccs_coal))
In [19]:
ccs_gas = (
    pyam.filter_by_meta(
        df.filter(variable='Primary Energy|Gas|w/ CCS')
        .timeseries(), **filter_args)
)
In [20]:
name = 'gas'
boxplot_by_cat(ccs_gas, **plotting_args(name, 'c'), legend=False)
In [21]:
data.append(('Gas with CCS', ccs_gas))

Compute cumulative CO2 stored

In [22]:
ccs = (
    df.filter(variable='Carbon Sequestration|CCS')
    .convert_unit('Mt CO2/yr', 'Gt CO2/yr')
    .timeseries()
)
ccs.index = ccs.index.droplevel([2, 3, 4])
In [23]:
cum_ccs = pd.DataFrame()
for i in range(2030, 2100, 10):
    cum_ccs[i] = ccs.apply(pyam.cumulative, raw=False, axis=1, first_year=2020, last_year=i)

cum_ccs = pyam.filter_by_meta(cum_ccs, **filter_args)
In [24]:
boxplot_by_cat(
    cum_ccs,
    categories=cats, column='category', years=range(2030, 2100, 10),
    ylabel='cumulative CO2 stored (Gt)',
    save=save_name.format('d_cumulative_ccs', figure_format),
    ymax=2050, add_marker=marker, legend=False)
/Users/dh/anaconda3/lib/python3.7/site-packages/matplotlib/axes/_base.py:3610: MatplotlibDeprecationWarning: 
The `ymax` argument was deprecated in Matplotlib 3.0 and will be removed in 3.2. Use `top` instead.
  alternative='`top`', obj_type='argument')
In [25]:
data.append(('Cumulative CCS', cum_ccs))

Export timeseries data to xlsx

In [26]:
writer = pd.ExcelWriter('output/fig2.17_data_table.xlsx')
for (name, _df) in data:
    pyam.utils.write_sheet(writer, name, _df, index=True)
writer.save()
In [ ]: